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Acausality in the Harish-Chandra equations for composite 
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Birmingham B4 7ET, UK 
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Abstract. Equations given by Harish-Chandra describing fields having both spins $ and: are 
minimally coupled to an external homogeneous magnetic field, and found to exhibit the 
usual acausality problems. One of the Harish-Chandra equations is a particular case of the 
Bhabha-Gupta equation and has similar acausality problems. The other is more compli- 
cated and this is reflected in additional acausal modes. The composite nature of the 
Harish-Chandra particles is used to discuss suggestions that high-spin problems may be 
resolved by regarding high-spin particles as composite. 

1. Introduction 

Since Vel0 and Zwanzinger (1969) discovered the acausality in the minimally coupled 
Rarita-Schwinger spin-; equation, many other high-spin theories have been studied 
and found to have similar difficulties. Almost all well known high-spin theories have 
been tested, and no free-field quantisable theory has emerged free of acausality in an 
external field (Capri and Shamaly 1972, Vel0 1972, Singh 1973, Jenkins 1974, 
Prabhakaran et a1 1975). The only known high-spin causal theories are those with 
indefinite charge or energy, which require an indefinite metric for quantisation 
(Prabhakaran et a1 1975, Krajcik and Nieto 1976). 

In this paper we show that the compound-spin theories of Harish-Chandra (1947) 
also suffer from acausality in an homogeneous magnetic field (HMF). Harish-Chandra 
has given two equations, each of which describe a field having two spin states, 4 and 3, 
both of the same mass. The total charge of the free field is positive definite in each case 
and so can be quantised in the normal way. One of the equations is in some way 
equivalent to a special case of the Bhabha-Gupta equation (Prabhakaran et a1 1975) 
and displays the same acausality difficulty. The other equation is more complicated and 
displays more complicated acausality. This may suggest that patching up the free-field 
theory is not going to help us out of the acausality problem. 

The Harish-Chandra particles are in a sense composite; in fact it was for this reason 
that the theory was thought to be unsatisfactory as a description of nature (Corson 
1953). Nowadays there is no particular prejudice against such theories. The algebra 
associated with the Harish-Chandra equation is the direct product of the Dirac and the 
Duffin-Kemmer (DK) algebra. We take advantage of this to investigate suggestions that 
the acausality may be an indication that high-spin particles are really composite 
(Gibbons 1976, Capri and Shamaly 1976). The precise constituents of the Harish- 
Chandra particles can be identified and it is found that the acausal modes are 
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attributable not to the physical part of the DK constituent but to the constraint part. This 
may suggest that regarding the particles as composite will not help us out of the 
acausality problem either. 

2. The Harish-Chandra equations 

The free-field Harish-Chandra equations can be written 

(iy”8, +,y)t,b = 0 

where the y w  matrices satisfy an algebra U(y) which is the direct product of the Dirac 
algebra U ( a )  and the Duffin-Kemmer algebra U@). The y, are defined by 

y, = a, + io& (2.2) 

where the a, and P, commute with each other and 

QI,QY +a&, = 2 g , v  

P , P Y P P  + P P P Y P ,  = g,c(Ypp + g,c(Yp,* 

w = iaoa1a2a3 

Further useful results derivable from (2.2)-(2.5) are 

Y,Yv + Y V Y ,  = %,U - P d Y  - P U P ,  

YWWPY + PVWY, = i(P,PY + PYP,). 

With y, so defined, Harish-Chandra (1947) has shown that 

U ( Y ) = U ( a ) @ U ( P ) *  

We choose matrix representations such that 

a, = 6, 0 I@, P, =Iu OS, 

where Iu, 18 are the unit matrices in the a and /3 spaces respectively and 6,, p ,̂ are the 
usual irreducible representations of the Dirac and DK algebras. Thus: 

vi being the Pauli matrices. For the p̂ , there are two non-trivial representations 
(Kemmer 1939), a 5 x 5 and a 10 X 10 representation, which we take as follows. 

5 x 5 representation 

S I  = 

. . . I .  

1 . . . .  
* a . . .  

. . . . .  

. i s . .  

A 

P 2  = 

a . . . .  

. . . . .  
I . . . .  

. . . . .  

. .  i . .  
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IO x 10 representation 

P I  = 

$2 = 

. . . I .  . . I .  . . I - i -  
I I I 

I I I 
. . .  I .  . . I .  . . I .  

. . . I . .  . 1 . .  * I  * 
I I I 

I I I 
. . * I . .  . I-i . . I  * 

I I 
7 - - -  --- -I-- ------ 1 - - - - - - - 

* + . I . .  . I  . . . I .  
I I 

I 

I 
. . I .  

. . I .  

9 . I .  
I 

I 

I- - ------ 
. . I .  

I . . I .  
I . . I .  
I 
I-- 
I 

* * I *  

------ 
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The dots denote zeros. Ps has been omitted since it will not be needed in calculations. 

yo satisfies the minimal equation 

Y W  - 1) = 0 (2.8) 

and is therefore non-diagonalisable. This contrasts with a0 and PO which are both 
diagonalisable, and has the significance that the constraints present in the equation (2.1) 
are of a more complex nature than those in the separate Dirac (no constraints) and DK 
(only primary constraints) theories. Equation (2.8) ensures that the field satisfying (2.1) 
is associated with a particle with unique mass x. However, the total spin is not unique. 
In the 5 x 5 b-representation the field variable (/I in (2.1) transforms according to the 
Lorentz representation 

9 = 9 ( 1 $ ) 0 9 ( $ 1 ) 0 2 9 ( 5  0 ) 0 2 9 ( 0  +). (2.9) 

92 = 9 ( ; 0 ) 0 9 ( 0 ; ) 0 2 9 ( 1 $ ) 0 2 9 ( ~  1)029(;0)029(0; ) .  (2.10) 

With the 10 x 10 @-representation (/I carries the Lorentz representation 

In both cases (2.9) and (2.10) there is the opportunity for the field + to display states of 
total spins $ and $. Harish-Chandra has shown in fact that in both cases both these spin 
states are realised. So the Harish-Chandra equations describe fields with unique mass 
and total spins 5 and $. Also, as Harish-Chandra has shown, the total charge associated 
with the particle is positive definite and so the free field is quantisable. 

The infinitesimal generator of Lorentz transformations in the y-algebra is given by 

I,’ =acff,av - f fycu,)+(P~’-P‘P,) .  (2.11) 

Y @T,* = x* (2.12) 

When minimally coupled to an external electromagnetic field (2.1) becomes 

where .zr, = -i(a, -ie&), e being the charge and the external electromagnetic 
potential. Equation (2.12) is not a true equation of motion, since yo is singular and so 
not all components of i,h have their time derivatives specified. However, Harish- 
Chandra (1947) has shown that (2.12) is equivalent to the non-degenerate system 

(2.13) 

(2.14) 

[”r,(/I + ((/I = AFp,(3gw”PP - PPP “P” - 2iwaPP’PCL)~y(/I + AFpW (ap&” - 2PpP ” ) P  ’ T ~ C I ,  

+ i A  (a,,F,,)(pPa ,a ’ - 2iwapPp@’ - gp”P’ + P‘P”P”)+ (2.15) 

and A = ie/2x2. In the free-field case this system reduces to 

(ia”a, +x)(/I = 0 pwa,* = o 
which is equivalent to (2.1). 

From (2.12) Harish-Chandra also derives the second-order equation of motion: 

rUr& +$eF,,( y ”y  ” +@@@’)$ - p”.rr,P ”7rTTU+ = x 2 ~  
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and on substituting from (2.14) this becomes 

[ ~ T ~ I T ,  - AFp, (3g’”p rp ” - p ‘p  ”p  ’p  Ir - 2iwa ”p  ‘p  ’p  e r ) ~ T ~ u  

-AFpwP7(aPa” - 2 ~ p ~ c I ) ~ ’ ~ T ~ y ] t + b + O ~  = O  (2.16) 

where O1 henceforth denotes any expression containing at most first-order field 
derivatives. This may be simplified by noting that from the DK algebra (2.5), 

Fp , (3g’u~r~p - ~ ‘ ~ ” ~ ’ ~ ” ) ~ T ~ I T , , I ( I  = 4 F p , ~ ’ ~ P ~ ~ ~ , 4  (2.17) 

modulo second-order derivatives. Also, modulo first-order derivatives (2.12) gives 

pLl~,t+b = iwa ”r,I(I. (2.18) 

Using the DK algebra (2.5), (2.18), and then the Dirac algebra (2.3), we find modulo 
second-order derivatives 

(2.19) 2iAFp,wa ”p‘p ’p  p ~ 7 ~ u t + b  = 2iAFp,wa ”p‘?rr.sr”t+b. 
Substituting (2.17) and (2.19) in (2.16) 

[ ~ T ~ T ,  -2Ac(2P’PP - i w a P ~ ’ ) n ; n , - A F , ~ ‘ ( a P a e ”  -2ppPp))p”~T~,]t+b+ 01 = 0. 

In the free-field case this reduces to 
(2.20) 

(a,P + $)* = 0. 

Since the existence theorems for a system of partial differential equations are 
stronger for Hermitian systems (Courant and Hilbert 1962, p 656) we convert (2.20) to 
Hermitian form. For this we use the Hermitising matrix A which satisfies 

yl. = AY, A- I .  (2.21) 
A is Hermitian and is given by 

A = A , O A ,  

where A, and A, are the Hermitising matrices in the a and p spaces respectively: 

s: = A,&, A:’ &= A,@,A& 
If we multiply (2.20) by A we find that 

(AiAFiwa p p  ”)+ = AiAF’&a ”p  ’ 
(note that u t  = -AwA-’)so this part of the coefficient is already Hermitian. AAcp’p”  
is not Hermitian, but we can rewrite: 

A A F , p ’ p P ~ T ~ ,  = MF,(p”pp - p p ~ ’ ) ~ T ~ ,  + ~ ~ F J P ~ ” ~ T ~ u  

and AAF,(P’PP -pPpu) is Hermitian while, using (2.18) we can write 

AAFpPpp ” 7 ~ ~ ~ ~ 4  = i AAF&@ ”a ’ ~ T ~ I T ~ I ( I  

and iAAF’&ppa” is Hermitian. Finally we can write 

AAFp,J3r(~Par’ - 2p”p”)p ’ I T ~ ~ T , , ~  

= f AAF,, [a ”a (p rp ’ + p ”p‘) - 2(p‘@ ”p ”p  ’ + p ’ p p p  ”p‘)] n;.rr,,t+b 
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modulo second-order derivatives, and the coefficient on the right-hand side is Hermi- 
tian. Combining the above results, the Hermitised form of (2 .20 )  is 

A { I P I T ~  - 2 A q [ 2 ( @  "p ' - p "p ") + 2iwp 'a " - i o a  ' p  "1 rTrU 
-&U$,, [a "a ' (p'p " + p "p ') - 2 ( p  'p'p "p " + pup "p "p ')I rTrU}$ 
+01=0  (2 .22 )  

which we now show has acausality problems. 

3. Acausality of the Harish-Chandra equations 

The characteristic surfaces of (2 .22 )  are specified by normals n,, satisfying the equation 

D(n ) = detln' - 2AF,[2(P "p' - pop ") + 2iwp'a - iwa  "p "]n,11, 

- $AFp, [(Y"CZ e (p'p " + p "p') - 2(p  'p"p "p + p '@"p "p ')]nTnu I = 0. (3.1) 

To simplify the calculations we consider the case of a constant external HMF in the z 
direction, F12 = -Fzl = H, all other FPu zero. Also, since we are interested in the 
existence of space-like characteristic surfaces, for which n,, will be time-like, we further 
simplify by looking to see if surfaces with n,  = (1 ,0 ,0 ,0)  exist-i.e. surfaces normal to 
the time axis. With these simplifications (3.1) becomes 

D( 1000) = IZ- 2AHa 'a2(/30)2 + 2AH(P ' p 2  - pzp ')(po)21 = 0 

or, with 77 = Z/2AH: 

17) - a'a2(P0)2 + (p'p2- p2p')(po)21 = 0. 

We now consider separately the 5 X 5 and 10 x 10 6-representations. 

3.1. 5 x 56-representation 

In this case (p'p2-p2p')(P0)' = 0. In fact i(p 'p2-p2p')  is the spin operator in the z 
direction and the operator i@'p' - pZp')po yields the spin density for the DK fields. So 
for the 5 x 5 (spin-0) representation we expect i(p'p2-p2p')po to vanish. Equation 
(3 .2)  now reduces to 

= 7712177 + a 3 1 4  
= 7712(772+ 1)4 



Acausality in the Harish -Chandra equations 1415 

So acausal propagation can occur if 

q 2 + 1 = o  

i.e. 

x4 - e2H2 = 0. (3.4) 

So for external fields satisfying x4 = e2H2 there are space-like characteristic surfaces 
with normal (1, 0, 0,O) for the equation (2.22). From D(1000) we see that the role 
played by the DK constituent of the theory is in coupling to the spin of the Dirac 
constituent to yield the ~ r ’ a ~ ( p ’ ) ~  =$(a’a2-a2a1)@0)2 term. 

That propagation of disturbances in the field 4 along the above bad characteristics 
can indeed occur can be seen by applying the shock wave formalism of Madore and Tait 
(1973) to the original first-order system (2.13), (2.14). Denote by [f] the discontinuity 
off across a characteristic surface with normal n,. Then for a first-order system such as 
(2.13), (2.14) we must have 

[$I = 0 [.rr,41= n,K 

where K transforms like 4. Then from the discontinuities of (2.13)-(2.15) we obtain 

{(U. n +iwAFp,[3n’”pP - p ” ( p .  n)P’” -2iwap(p. n)p’ ]  

+AFp,(aPaIr -2p”p” ) (p .  n ) } K  = 0. (3.5) 

In the case of an HMF, along characterstics with normal n, = (1, 0, 0,O) this simplifies to 

[ -iqa + a ‘p  ‘p2 - a ’pop + w a  ‘a 2po - w @ ‘0 - p ’p ‘)Po]K = 0. 

In the 5 x 5 DK representation this further simplifies to 

[-iqa’ + a ‘pop2 - a ‘pop’ + w a  ‘a 2@o]K = 0 

from which the condition for non-zero K is 

) - iqao+a’p0p2-a2p0p1+wa 1 2 0  a p I =o .  
Or 

-iq - - U 2  * U1 * - U 3  

iq -(12 u1 ff3 * 

, -iq . . .  
. .  iq 

-iq . . 
- iq 

. -iq . 

. . i q .  
* U 3  . .  a -iq . 

iq . .  - u 3  * 

= 12(q2 + 114 = 0 

which is satisfied from (3.3). Thus, non-zero discontinuities in the field derivatives can 
propagate along these bad characteristics. 
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3.2. 10  x lob-representation 

In this case (p'p'-p'p')(po)' is not zero in (3.2), which becomes 

D(1000) = 
. .  . .  V I 6  + (+3 @ 1 3  + x 

7 7 1 6 + ( + 3 @ 1 3 + x  * . I  

. .  
7716 ' 

* .  
* 7716 

* 7 7 1 6 + ( + 3 @ 1 3 + X  . .  

7712 * 

. .  7 1 6 + ( + 3 @ 1 3 f X  ' * 

. .  
* 771: . .  

= 77 161?& + U 3  @ 1 3  + x l4 
where 

, = I 4  0 -1 8 cl]. 0 

So D(1000) = 7724(772 + 1)4(772 +4)4 which indicates characteristic surfaces with normal 
(1 ,0 ,0 ,0 )  if 

x 4 - e 2 H 2 = 0  or x 4 - 4 e 2 H 2 = 0 .  (3.7) 
So the extra complexity of this theory is reflected in additional opportunity for acausal 
propagation. The additional factor 772+4 can be traced directly to the (P'p'- 
p2p')(po)2 and so is created by the physical spin of the spin-1 DK theory. 

The shock-wave formalism applied to the original system (2.13)-(2.15) in the 
10 x 10 case shows that disturbances can indeed propagate along the bad characteristic 
surfaces in both cases of (3.7). 

To summarise, both of the Harish-Chandra equations suffer from acausality prob- 
lems in an external HMF. This is consistent with the conjecture that positive-definite 
free charge is incompatible with causal propagation for high half-odd integer spin 
(Prabhakaran et a1 1975). Also, it is not surprising in view of (2.8), since as shown by 
Vel0 and Zwanzinger (1971), equations of the form (2.1) with yo satisfying as minimal 
equation 

y 2 Y : -  I > =  0 r 3 2  (3 * 8) 
can lead to acausal behaviour when coupled minimally to an electromagnetic field. The 
Harish-Chandra equations provide yet one more example of this. So far, no causal 
theory has been found, for spin greater than 1, which satisfies (3.8). Since (3.8) is 
necessary for positive-definite free charge or energy (but not sufficient) for spin greater 
than 1 (Gel'fand et a1 1963) and unique mass, the conjectured connection between 
acausality and positive-definite free charge (for half-odd integer spin) may in fact just be 
the stronger connection between acausality and (3.8). 

The above propagation analysis leaves open the question of the rigorous existence 
of the solutions to (2.1), or the second-order system (2.16) (Velo 1975, Bellisard and 
Seiler 1972). That we have Hermitised (2.16) to use the form (2.22) is a slight help. 
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However, even the existence theorems for Hermitian systems are not fully developed 
for the case of variable coefficients. Despite this, Bellisard and Seiler claim some 
existence theorems for Fierz-Pauli spin-2, so perhaps similar results for (2.22) might be 
true. In any case, if the solutions do not rigorously exist then the equations are of no 
physical value. Harish-Chandra was one of the first authors to point out the existence 
problems for high-spin fields coupled to external potentials (Harish-Chandra 1947, 
Wightman 1968), and it is therefore surprising that his equations were ignored for so 
long. 

4. Discussion 

Another theory based or, the equation (2.1) and Lorentz representation (2.9) and 
describing a field with spin states $ and $, with in general different masses, is the 
Bhabha-Gupta equation (Bhabha 1952, Gupta 1954). Prabhakaran et a1 (1975) have 
analysed this equation by the shock-wave formalism and shown that acausal behaviour 
sets in at precisely the point where the free charge becomes positive definite. The 
Bhabha-Gupta equation contains two arbitrary parameters denoted d,  a by Prabhaka- 
ran et al, and a further parameter A which determines the ratio between the m a y s  
of the spin-; and spin-$ state. The Harish-Chandra equation using the 5 X 5 p -  
representation would therefore seem to be a reformulation of a particular case of 
the Bhabha-Gupta equation. The equation determining acausal propagation in the 
Bhabha-Gupta theory (Prabhakaran et al, equation (17)) is 

where x is the mass of the spin-2 state, and @" = $eFLYIAFTA. This equation is indepen- 
dent of A ,  and choosing d,  a such that 

[31-G)]*=1 3d2  

and considering an HMF, and normal n, = (1,0,0, O),  the equation reduces to 

x ~ - ~ ' H ~ = o ,  

identical to (3.4).  So by appropriately choosing the parameters in the Bhabha-Gupta 
equation we can obtain the same mass-spin spectra and similar propagation behaviour 
to the 20 x 20 Harish-Chandra equation, which is based on the same representation, 
(2.9). 

The 40 x 40 Harish-Chandra equation, based on (2.10) is perhaps the most compli- 
cated half-odd integer spin theory whose propagation properties have been studied. As 
already noted, the extra complexity has simply provided further opportunities for bad 
behaviour, and weakens the hope that we may escape acausality difficulties by manufac- 
turing more complicated free-field theories. 

The composite nature of the Harish-Chandra theory (being composed of the Dirac 
and DK theory) invites speculation on the idea that problems in high-spin theories may 
be due in some way to their composite nature. Apart from the interesting fact that the 
Harish-Chandra algebra is acausal, even though it is the direct product of two causal 
algebras, it is worthwhile studying in detail the contributions made by the Dirac and DK 
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theories to the structure of the Harish-Chandra field, and to its acausality problem in an 
HMF. Consider for example the 5 X 5 6-representation. In the characteristic determin- 
ant lg -a1a2(p0)’1 for normals n, = (1 ,0 ,0 ,0)  in an HMF, the troublesome term is 
a1a2(P0)2. The only way of removing the acausality is by using the trivial representa- 
tion @” = 0, and then the Harish-Chandra equation reduces to the Dirac equation, 
which of course is causal. So with the 5 X 5 p-representation the acausality is inevitable. 
We now examine precisely how it arises. 

Now, as 
Harish-Chandra has shown, the free-field physical states in his theory satisfy Po* = 0 in 
the rest frame and the spin of his particle is compounded from the Dirac spin and the 
part of the DK spin operator which in fact corresponds to the redundant components in 
the separate DK theory, Thus, it is the constraints of the DK theory which contributes to 
the physical state of the Harish-Chandra theory. Indeed, in the DK theory, the 
projector onto the physical states is 

The a 1a2(po)2 is a coupling between the Dirac spin and the DK object 

and from (2.6) we have 

1 - ( yo )2  = (PO)’, 

and 1 - ( yo )2  is the projector onto the constraint space of the Harish-Chandra theory. 
So, quite regardless of the composite nature of the physical Harish-Chandra states, the 
acausal behaviour can be traced not to the physical constituents of this composite but to 
the non-yhysical (constraint) part of the DK constituent. The same applies to the 
10 x 10 @-representation also-it is the operator which leads to the problem, and 
this can be identified with the projection operator onto the Harish-Chandra constraint 
space. This may be an indication that whether or not the particle is regarded as 
composite is irrelevant to the acausality and related problems, which are due solely to 
the constraint structure. Capri and Shamaly (1976) have related acausality in the 
minimally coupled Fierz-Pauli spin-2 equation to the non-local nature of the Hamilto- 
nian, and it is suggested that we might interpret this as a manifestation of internal 
structure in the particle. However, this latter interpretation is not necessary. The 
non-locality is directly attributable to the constraints in the theory and arises precisely 
because of their elimination in conversion to Hamiltonian form. The above discussion 
of the Harish-Chandra equation suggests that regarding the particle as composite will 
not remove the bad effects of the constraints. Indeed, it has been stated by Goldman et 
a1 (1972) that the difficulties with the spin-1 theory, for example, cannot be resolved by 
assuming that the spin-1 particle is composite. 

It now seems that all well known free-field quantisable high-spin theories have been 
found to exhibit acausality, at least when coupled minimally to the electromagnetic 
field, and in some cases with other couplings. In the past, two fond hopes for a remedy 
have been the possibility of using more complicated representations of the Lorentz 
group, and of using a composite particle approach. The above results on the Harish- 
Chandra equation perhaps diminish these hopes. Apart from this, the more compli- 
cated high-spin theories are becoming algebraically intractable for the testing of 
causality. 

Recently, new hope has been provided by a theory of supergravity yielding an 
apparently consistent causal spin-2 description (Freedman and van Nieuwenhuizen 
1976, Ferrara and van Nieuwenhuizen 1976-we are grateful to one of the referees for 
pointing out this work). Early supergravity theories were formulated in a background 
superspace parametrised by four commuting Riemannian coordinates x ,  and four 
anti-commuting spinor coordinates 8, (Zumino and Nath 1976). In global supersym- 
metry the supersymmetry charges and Poincark group generators constitute a graded 
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Lie algebra, and particle supermultiplets are designated by the irreducible representa- 
tions of this algebra. Some of the representations act in the space of helicity states of 
two massless particles of adjacent spin J and J - f (for any J = t,  1, . . .)-a neutral boson 
and a Majorana fermion. The (2, $) irreducible representation has naturally been 
identified with the supergravity multiplet. 

Freedman and van Nieuwenhuizen took a different approach to supergravity in 
which an ordinary Riemann commuting coordinate background is used, instead of 
superspace, and in which the only fields in the gravitational multiplet (2,;) are the 
vierbein field V.,(x) and a Rarita-Schwinger field $,(x). An ansatz of a Lagrangian 
and a set of transformation rules on the fields is taken and local supersymmetry 
invariance is achieved by modifying the Lagrangian and transformation rules in a 
systematic way. The result is called (pure) supergravity, and provides a theory in which 
massless spin-2 and spin-; are coupled in a locally supersymmetric Lagrangian. The 
hope is that there exists a super-Higgs mechanism by which the Rarita-Schwinger field 
can be given a mass. The supersymmetry invariance of supergravity is a fermionic 
gauge invariance which is basically a curved space generalisation of the gauge 
invariance of the Rarita-Schwinger field noted by the original authors in 1941 (Rarita 
and Schwinger 1941). 

Being a coupling of high-spin fields, supergravity might be thought to be susceptible 
to the usual high-spin problems of acausality or indefinite metric. Deser and Zumino 
(1976) used a first-order formulation of supergravity in which the 4, field, vierbein field 
and vierbein connection coefficients are all varied independently, and showed that the 
acausality problem does not arise, precisely because of the fermionic gauge invariance. 
The form of Deser and Zumino is completely equivalent to that of the second-order 
form of Freedman and van Nieuwenhuizen, but is easier to handle in the study .of 
invariance properties, although the second-order form seems more convenient for 
quantisation. In the usual external electromagnetic field problem for the Rarita- 
Schwinger field (Velo and Zwanzinger 1969) the acausality arises because of the 
existence of secondary constraints dependent on the external field. Thus, if the 
Euler-Lagrange equation is E, = 0, then the covariant derivative d'E,  does not vanish 
identically but yields a secondary constraint which causes problems. In the present 
work on the Harish-Chandra equation, the corresponding constraint is (2.14). In the 
case of supergravity theories however, application of a suitable covariant derivative to 
the Euler-Lagrange equation yields identically zero as a consequence of the fermionic 
gauge invariance. So no secondary constraint exists and causality is expected in the 
pure supergravity theory, (2, S). 

Of course, causality is not sufficient for the consistency of the theory, for we have to 
ensure that there is no effective indefinite metric. This aspect was studied by Das and 
Freedman (1976), along with the causality. The indefinite metric does occur in 
supergravity, as in all gauge theories, and it is necessary to prove that the physical 
subspace of states of gauge particles has positive metric, as required by unitarity of the 
S-matrix. Note that this is not possible in known massive Lagrangian field theories with 
indefinite metric; transition to states of negative norm is always possible. For super- 
gravity the proof is given in the tree approximation to the S-matrix elements, because 
beyond this difficulties with divergent Feynman diagrams arise. In the tree approxima- 
tion Das and Freedman show that the indefinite metric is not effective in supergravity- 
so at this level at least supergravity seems consistent. 

It should be emphasised that the results of Das and Freedman are to some extent 
formal. For example, as they observe, their treatment of causality of propagation is not 
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rigorous, even at the classical level. This is because the differential equations of pure 
supergravity are non-linear in the spinor field components and there maybe difficulty in 
applying the usual existence theorems of partial differential equations when such 
anti-commuting variables are involved. This may not be a serious problem. It is in any 
case one which will eventually arise in the conventional treatments of the causality 
problem at the quantum level. There are however some general problems in the gauge 
quantisation of supergravity to which Das and Freedman refer, and these may be 
difficult. 

Arguments involved in the causality and indefinite metric question rely basically on 
the fermionic gauge invariance and so should be applicable to extended supergravity 
theories. Although the CL, field in such theories is massless, it may be possible to obtain 
consistent theories for massive spin-; particles by some super-Higgs mechanism. 

Recent extensions of supergravity have been promising. Freedman (1977a) has 
coupled the (2, ;) gravitational multiplet with the (1, $) Abelian gauge multiplet, 
obtaining a theory in which the spin-1 field becomes an axial gauge field coupled to both 
the spin-; and spin-4 fields. This is claimed to provide the first causal and ghost-free 
theory of an electromagnetic-like interaction for the spin-; field. However, a cosmolog- 
ical term occurs in the theory which sets an unrealistic limit on the axial charge, and it is 
not clear yet how to handle this term. 

To summarise, although the status of gauge-quantised supergravity theories in 
physics is still uncertain at present (Freedman 1977b-an excellent review), the 
apparent absence of the usual high-spin problems does make them attractive. They also 
have improved renormalisability properties. However, although such gauge theories 
may offer a way out of the acausality problem, there is still a need to understand why 
conventional high-spin Lagrangian quantum field theory is so troublesome, and how if 
possible these troubles can be avoided. 
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